

Evaporating tasks during execution of dynamically controllable networks

Russell Knight
Jet Propulsion Laboratory,

California Institute of Technology
Pasadena, CA

russell.knight@jpl.nasa.gov

Abstract

We present an extended execution algorithm for executing
plans represented using simple temporal networks with
uncertainty. We presume that the network to be executed is
dynamically controllable. Our extension allows for skipping
tasks that can be shrunk to zero duration if subsequent tasks
are ready to start execution. The asymptotic time
complexity of the technique scales as a polynomial of the
number of timepoints that could execute simultaneously.

Introduction
One advantage of formulating plans conservatively is that
we can know a-priori that the execution will (or probably
will) succeed. One disadvantage of this approach is that we
waste time and resources. In practice, we often skip the
execution of tasks that lead to a goal if the tasks are
deemed to be superfluous. We present a technique for
modeling “skippable” tasks and skipping these tasks
during execution.

Simple temporal networks (STNs) [2] provide a rich
framework to connect inter-related tasks, execute the tasks,
and monitor the execution. Unfortunately, STNs presume
that the constructors and executors of these task networks
have control over the duration of the tasks being executed,
which is not always the case. Simple temporal networks
with uncertainty (STNUs) [12] increase the
representational capability of STNs by including a labeling
of those intervals that are uncertain (contingent). Previous
work by [7] has shown that we can know that an STNU is
executable if our executor only changes those durations
that are not uncertain (free) for future tasks, i.e., the STNU
is dynamically controllable. The execution strategy of [7]
presumed that we wouldn’t skip tasks—the technique we
present here allows us to skip tasks by shrinking their
associated durations to 0. This is implemented in the
Mission Data System [3] software framework as part of the
timepoint firing algorithm.

Importance

If an execution agent can incorporate runtime feedback,
this can be used to optimize plan execution in two ways: 1)
reduction of resource utilization and 2) reduction of make-
span. We can avoid using resources during execution, thus

redundancy can be built into a plan but also can be ignored
if it is not required. Additionally, we can reduce the make-
span of an executed plan with respect to the original plan.
Both resource usage and make-span are useful metrics for
plan quality, thus our technique provides for on-line plan
optimization.

Preliminaries

Simple Temporal Networks with Uncertainty

A simple temporal network (STN) can be represented as a
directed, edge-labeled graph G = (N, E) with real-valued,
edge-label functions l and u. The nodes of the graph
represent timepoints. A timepoint refers to a specific, yet
possibly unspecified, moment in time. The edges of the
graph, along with the l and u labels, represent temporal
constraints between timepoints. More specifically, the l
and u values bound the duration allowed between two
timepoints. (Figure 1 shows two timepoints and a temporal
constraint pictorially.)

n1 e1 n2

l(e1) = 10
u(e1) = 20

≡ n1
e1

[10, 20] n2

Figure 1 – Timepoint and temporal constraint

representation

An execution of an STN is a real-valued, node labeling T
of G that adheres to the temporal constraints. Thus, for all
edges e = (n1, n2) ∈ E, l(e) ≤ T(n2) – T(n1) ≤ u(e) implies
that T is a valid execution. Checking for STN executability
is computable in polynomial time [2]. (This is equivalent
to checking consistency of the STN.) But, this assumes
that we can know (and control) with certainty the duration
of each interval represented by the temporal constraints
before execution, which is not the case in many real
domains. Thus we need to consider uncertainty for specific
intervals.

A simple temporal network with uncertainty (STNU) is an
STN with the addition of set C ⊆ E. Edges contained in C
are temporal intervals that are determined by “nature” (but
still adhere to the l and u constraints). We refer to such
intervals as contingent (as Figure 2), otherwise the

intervals are referred to as being free (as Figure 3). Any
execution strategy must accommodate the contingent
edges. Thus, T for an STNU is partially defined by nature,
and partially defined by us. There are a number of ways to
characterize an STNU with respect to execution. An STNU
is strongly controllable if we can devise a fixed valued T
that accommodates all possible assignments by nature to T.
(We learn nature’s assignment after making our
assignment.) An STNU is weakly controllable if for all
possible assignments of T by nature an assignment of T by
us is possible. (We learn nature’s assignment before
making our assignment.) An STNU is dynamically
controllable if for all possible assignments of T by nature
at execution time we can assign (or reassign) T for
intervals not yet executed. (We learn nature’s assignment
during execution, and likewise make our assignment
during execution.) Strong controllability [12] and dynamic
controllability [7] are decidable in polynomial time, while
the task of deciding weak controllability is co-NP complete
[5].∉∈

n1 e1 n2

l(e1) = 10
u(e1) = 20
e1 ∈ C

≡ n1
e1

[10, 20] n2

Figure 2 Contingent edge representation

n1 e1 n2

l(e1) = 10
u(e1) = 20
e1 ∉ C

≡ n1
e1

[10, 20] n2

Figure 3 Free edge representation

This paper focuses on the execution of STNUs that are
dynamically controllable. With this comes the requirement
for waits—periods that are determined by nature and the
result of computing dynamic controllability. Waits cause
delays in normally free intervals to ensure the
accommodation of the contingent intervals, thus a wait
might make a free interval partially contingent. We return
to the issue of waits later.

Concerning notation, we use E as the edge set of G = (N,
E) of the STNU representing the plan being discussed.
Also, we presume that for all edges e ∈ E, l(e) ≥ 0. Any
unlabeled edge e in our figures is assumed to have l(e) = 0
and u(e) = ∞.

Plan Representation

A plan is a network of tasks and temporal constraints. A
task consists of a temporal constraint e = (n1, n2) in the
STNU, the timepoints n1 and n2 associated with e, and the
associated values represented by the functions l(e), u(e),
and set C. We refer to n1 as the start-time of the task, and
n2 as the end-time of the task. For simplicity, when

referring to a task we will only refer to its associated edge
in the STNU. This characterizes the temporal extent of the
task but not its preconditions, in-conditions, or effects. To
provide these, we include the additional condition-valued,
edge-label functions precond, incond, and effect. While
conditions have a rich history of semantics and
representation, for our purposes a condition is a predicate
holds(x) where x is a condition. holds considers in the
current execution context whether or not a condition holds.
If there exists a temporal constraint e ∈ E that is not
related to any task, holds(precond(e)), holds(incond(e)),
and holds(effect(e)) are trivially true.

n1 e1 n2

l(e1) = 10
u(e1) = 20
holds(precond(e1)) = false

≡ n1
e1

[10, 20] n2

Figure 4 Task with unmet preconditions

n1 e1 n2

l(e1) = 10
u(e1) = 20
holds(precond(e1)) = true

≡ n1
e1

[10, 20] n2

Figure 5 Task with met preconditions

Task Truncatability

To represent that a task is potentially truncatable, we
employ the use of the edge-predicate function truncatable.
Note that truncatable(e) implies that if e is being executed,
then we can truncate its execution as long as doing so does
not force the execution of a task for which its
preconditions do not hold. We assume that all free
intervals can be truncated. truncatable(e) being true for
some contingent e ∈ E (where e ∈ C) implies that although
the completion time of e is under control of nature, its only
purpose in the plan is to achieve the preconditions of the
next step, and it may be truncated if these preconditions
are already met. Thus truncatable provides us the semantic
information we need to perform opportunistic execution.

Henceforth we will concern ourselves only with
truncatable edges. Any edge e ∈ E that is not truncatable
is contingent, and only nature can determine the interval
associated with it. We have no opportunities for skipping it
and all possible intervals must be accommodated.

Approach

Execution Strategy

Our overall strategy for execution is to execute timepoints
as early as possible while accommodating the contingent
intervals. We intend to show how to skip tasks during
execution, but first we describe the naïve execution

strategy. The naïve execution for task e = (n1, n2) proceeds
thusly:

(1) Wait until the start-time (n1) of the task may be
legally assigned to the current time (henceforth
referred to as now).

(2) Wait until holds(precond(e)) is true.

(3) Assign T(n1) to now, i.e., execute all tasks that n1
is the starting timepoint.

(4) Assume that holds(incond(e)) continues to be true
until exec(n2) is assigned (otherwise an error in
execution has occurred and should be handled as
an exception).

(5) Wait until the end-time (n2) of the task may be
legally assigned to now.

(6) Wait until all edges x = (n2, n) ∈ E,
holds(precond(x)) is true (all tasks for which the
end-time of e is the start-time have satisfied
preconditions).

(7) Assign T(n2) to now.

(8) Assert effect(e). (Note: effects are not handled
during execution as execution is concerned only
with preconditions; thus the function effect is not
pertinent to our discussion and will be dropped.)

(9) Returning to the topic of waits, it is clear to see
that waits can be implemented as part of the
precond function. Since the system waits for
preconditions to hold, each interval associated
with the wait must be labeled as being contingent.
It should be noted that, when combined, the
precond and holds functions work as a monitor of
the state of the world.

Because this framework is built around the dynamic
controllability of the STNU, it will execute properly if no
free interval is actually contingent and all interval bounds
are obeyed by nature. We will assume that this is the case;
otherwise some form of plan recovery would be required.
Plan recovery is outside the scope of this work.

Simple disjunctive execution

To handle certain types of disjunctions of tasks, we take
advantage of an ambiguity in the semantics of time with
respect to the preconditions, in-conditions, and effects of
tasks. Under normal circumstances, the minimum duration
of any task is some real value ε > 0. But, what does it mean
semantically when a task is of zero duration? Nothing in
the STNU requires tasks to be of greater than zero
duration. For our work, we say that a task (or temporal
constraint or interval) of zero duration is skipped. Thus, if
we have a series of possibly zero-duration tasks, all of
which are free, then, under certain criteria, we can skip

them all. The remainder of this paper describes: 1) under
which criteria tasks can be truncated or skipped, and 2)
how to tractably execute a plan with skipping.

Skipping Criteria

In general, we assume that we can skip tasks as long as, in
the end, the following conditions hold: 1) we introduce no
violations of the temporal constraints in the STNU, 2) all
newly executing tasks have their preconditions fulfilled,
and 3) all currently executing tasks have their in-
conditions fulfilled.

We need to identify threats to skipping. Knowing whether
or not a temporal constraint violation would occur during
execution is handled using the algorithms of [7]. If a task
is started with its preconditions fulfilled, it is assumed that
its in-conditions will hold during its execution, (otherwise
this is an execution-time error that would need to be
handled as an exception.) Thus, the remaining threat to
skipping is the possibility of a newly executing task not
having its preconditions fulfilled.

If a timepoint n3 comes after or is simultaneous to another
timepoint n1, then the assignment of exec(n3) to now
implies the assignment of exec(n1) to now, thus forcing the
execution of n1. If n1 has some outgoing edge e = (n1, n2) ∈
E where holds(precond(e)) is false, then executing n3
causes e to fail. Of course, we might be able to skip e, but
then we would have to check the out-degree of n2, etc.,
until we reached the end of our skipping opportunities.
Thus, a threat to the execution of n3 is caused by any edge
e = (n1, n2) ∈ E where the execution of n3 implies the
execution of n1, n2 cannot be executed due to temporal
constraints, and holds(precond(e)) is false. If no such edge
exists, then no threats exist, and n3 can be executed.

n1

n3

e
n2

Figure 6 -- Timepoint n1 threatens n3

Threat propagation

We can see from the previous discussion that the source of
threats is the frontier of the skippable tasks. The frontier of
skippable tasks are those constraints or tasks whose start-
times could be assigned to now, but whose end-times
cannot be due to temporal constraints. Any task that is
skippable is not the source of a threat per se—only tasks
that are not skippable and for which their preconditions do
not hold. It is also important to note that only tasks that are
candidates to begin execution are sources of threats. Figure

7 gives an example of the frontier. Task (n1, n2) is
executing; Tasks (n2, n3), (n2, n4), (n3, n5), (n4, n5), and (n4,
n6) are skippable (they could execute now), and tasks (n5,
n7) and (n6, n7) are at the frontier. (Note: remember that
unlabeled edges are ordering constraints.)

n1 n2

[1,10]

n3 n7

n6

n5

n4

currently
executing could execute now cannot execute now

Frontier

Figure 7 The execution frontier

Theorem 1: The only sources of threats are tasks at the
frontier of the collection of skippable tasks.

Proof is by contradiction. Assume the contrary— all tasks
at the frontier could execute but there exists a threat to
execution in the set of tasks that could execute now.
Therefore, there is a threat in the collection of skippable
tasks, but all tasks e for which (a) the start-time is
executable according to the STNU constraints and (b) the
end-time is not, (c) holds(precond(e)) is true. Then, there
must exist an e such that (d) its start-time is executable, (e)
its end-time is executable, (f) holds(precond(e)) is false.
We know d and e because this characterizes the rest of the
executable tasks excluded by a and b. We know f because
we presume a threat, and by c we know it is not at the
frontier. But, if the end-time of a task is executable, it can
be skipped, and the value of holds(precond(e)) is no source
of a threat, but by our assumption it cannot be skipped.
The only reason a task cannot be skipped is if it causes the
execution of a start-time of a task e for which
holds(precond(e)) is false. The entirety of the frontier can
be executed (by c), thus any chain of skippable tasks leads
to an executable task, leading us to a contradiction.

Theorem 2: Threats propagate backward over a task e only
when holds(precond(e)) is false.

Proof: We exhaustively list the alternatives. Consider the
tasks e1 = (n1, n2) and e2 = (n2, n3). e2 is a threat, thus
holds(precond(e2)) is false, and n3 is not executable
according to the constraints of the STNU.

Case 1: holds(precond(e1)) is true and threats propagate
backward. This is false because if holds(precond(e1)) and
n1 is executable, then we can avoid the threat by executing
n1 and not executing n2. Thus, threats do not propagate
backward over tasks for which the preconditions hold.

Case 2: holds(precond(e1)) is false and threats propagate
backward. This is true because if we execute n1 we are in
error because holds(precond(e1)) is false, and if we skip e1

by executing n2 we are in error because holds(precond(e2))
is false.

Figure 8 gives an example of the threat of (n6, n7)
propagating backward to threaten n4, but does not threaten
n2.

n1 n2

[1,10]

n3 n7

n6

n5

n4

currently
executing could execute now cannot execute now

x

Figure 8 Threats propagate backwards

Theorem 3: Threats propagate forward over all tasks.

Proof is by induction on the number of interceding tasks
between a threat and any subsequent executable tasks.
Clearly, as our previous example illustrates, the base case
of a task e1 = (n1, n2) that begins executing causes the task
ethreat = (n1, nthreat) to execute. Since ethreat is a threat
(holds(precond(e)) is false and nthreat cannot be executed),
but shares a start-time with e1, executing e1 would lead to
the execution of ethreat, thus e1 is also a threat. Inductively,
consider an additional em = (nm, nm+1). The base case
reveals itself at each previous ex to em, leading to each ex
being identified as a threat, until em-1 = (nm-1, nm) is
identified as a threat. The induction closes with em being
identified as a threat following the same argument as for
e1. It should be noted that since all interceding tasks are
skipped except for em, the preconditions of the interceding
tasks have no effect. The preconditions of em also are not
important, because even if holds(precond(em)) is true,
executing nm leads to the execution of n1.

Figure 9 shows threats propagating forward over (n4, n5)
even though holds(precond((n4, n5)) is true. Note that
propagation would continue to n3 according to Theorem 2.

n1 n2

[1,10]

n3 n7

n6

n5

n4

currently
executing could execute now cannot execute now

Figure 9 Forward propagation of threats

Threat Propagation Algorithm

Let us call the set of timepoints that can be executed now
according to the constraints of the STNU Candidates ⊆ N.
For all currently executing tasks e = (n1, n2) such that e ∈
C and truncatable(e) is also true and nature could assign
T(n2) to now, we include n2 in Candidates. Let us call the

set of edges that lie on the frontier of the candidates
PossibleThreats. More formally, PossibleThreats ⊆ E such
that for each e = (n1, n2) ∈ PossibleThreats, n1 ∈
Candidates and n2 ∉ Candidates. Let Threats ⊆ E be the
set of edges that are known to be threats. We initialize
Threats with every e ∈ PossibleThreats such that
holds(precond(e)) is false (Theorem 1).

We now propagate threats backward across each edge e ∈
Candidates such that holds(precond(e)) is false (Theorem
2), adding each timepoint to Threats. We also propagate
threats forward across each edge e ∈ Candidates
regardless of its preconditions (Theorem 3). This can be
accomplished in time that is linear in the number of edges
in Candidates using a simple reachability algorithm on a
transformed graph. After propagation, we have the entire
set of threats. We execute all timepoints in Candidates that
are not start-times for edges in Threats.

n1 n2

[1,10]

n3 n7

n6

n5

n4

currently
executing could execute now cannot execute now

n2 n3

threat

n6

n5

n4

Figure 10 -- Reachability graph transformation

The reachability graph GR = (NR, ER) is a directed graph.
threat is a node not in N from which threats originate. It is
from this node that we will compute reachability.
NR=Candidates ∪ {threat}. For all e = (n1, n2) ∈ Threats
(as calculated above before propagation), add an edge x =
(n1, threat) to ER. For all e = (n1, n2) ∈ E such that n1 ∈
Candidates and n2 ∈ Candidates, add e to ER. If
holds(precond(e)) is false, add (n2, n1) to ER. Compute
reachability from threat, which results in a set of nodes X
that are reachable from the source node, threat. Threats is
equivalent to X. The time complexity of computing
reachability is O(|N|lg|N|+|E|), using Dijkstra’s algorithm
with a Fibonacci heap [1]. The space complexity is at most
O(|N|).

Examples
This system is deployed in a real-world plan execution
system. The problems solved by its design are very much a
function of the types of problems that needed solving
according the to requirements of domain modelers. Some
useful examples of meta-structures used by modelers

include series preconditional satisfaction and parallel
preconditional satisfaction.

Series preconditional satisfaction (SPS) is the idea that
several tasks in series are used to achieve a goal, but if a
precondition for any task later than the current executing
task becomes satisfied, it is appropriate to skip all
intervening tasks and execute the latest task that causes no
threat. A specific example of this strategy is the
“winnowing down” of a state requirement through a series
of related tasks. For example, we might want to point a
camera on a spacecraft towards a planet. This might
require, in general, a series of operations that refine the
pointing of the spacecraft. (See Figure 11.) But, if we are
already opportunistically pointing at the planet, we might
wish to skip steps to continue to our goal, (as in Figure
12).

n1 e1 n2 n3 n5n4e2 e4e3

precond(e3) = "pointing near Mars"
in-cond(e3) = "pointing near Mars"
effect(e3) = "accurately pointing at Mars"

precond(e4) =
 "accurately pointing at Mars"
in-cond(e4) =
 "accurately pointing at Mars"
effect(e4) =
 "picture taken of Mars"

precond(e2) = "not pointing at Sun"
in-cond(e2) = "not pointing at Sun"
effect(e2) = "pointing near Mars"

precond(e1) = "ok to point"
in-cond(e1) = "pointing"
effect(e1) = "not pointing at Sun"

Figure 11 SPS example

n1 e1 n2 n3 n5n4e2 e4e3

currently
executing could execute now cannot execute now

n1 e1 n2 n3 n5n4e2 e4e3

currently executing could execute now
cannot
execute

now
Figure 12 Execution of n2 and n3

Additionally, SPS can be augmented to include the idea
that at least one of the members of the series must be
executed by inserting a temporal constraint from the
beginning of the series to the end of the series of ∈
minimum duration, (as in Figure 13.)

n1 e1 n2 n3 n5n4e2 e4e3

e5
[∈, ∞]

Figure 13 At least one task must execute

Parallel preconditional satisfaction (PPS) is the idea that
several tasks in parallel are used to provide redundancy in
hopes of satisfying a precondition. Once the precondition
is met, the tasks might be truncated or skipped, depending
upon whether or not the preconditions of each are satisfied.
This allows one task that is ready to start to begin
attempting to achieve the goal precondition while other
tasks with the same general goal wait for their own
preconditions to start. For example, we might want to
ensure that the solar panels of a spacecraft are pointed to
the sun. We have a number of ways of doing this, and we
need only one way to succeed and thus will truncate any
other executing tasks and skip pending tasks to continue on
with charging the spacecraft. (See Figure 14 and Figure
15.)

n1 e1 n2

n3

n5n4

e2 e4

e3 e5

precond(e3) = "reaction wheels warm"
in-cond(e3) = "pointing"
effect(e3) = "pointing at Sun"

precond(e4) = "thrusters warm"
in-cond(e4) = "pointing"
effect(e4) = "pointing at Sun"

precond(e5) = "pointing at Sun"
in-cond(e5) = "charging"
effect(e5) = "battery charged"

precond(e1) = "reaction wheels ok"
in-cond(e1) = "warming reaction wheels"
effect(e1) = "reaction wheels warm"

precond(e2) = "thrusters ok"
in-cond(e2) = "warming thrusters"
effect(e2) = "thrusters warm"

Figure 14 PPS example

e1

e2 e4

e3

currently
executing could execute now cannot execute now

n1 n2

n3

n5n4 e5

e1

e2 e4

e3

currently executing
could

execute
now

cannot
execute

now

n1 n2

n3

n5n4 e5

Figure 15 Execution example

Previous Work
The seminal work on STNs is [2]. Previous work in STN
and STNU execution includes the work of [6] where
efficient algorithms for managing propagation were given
and the notion of network dispatchability was introduced.
[12] and [5] introduced the notions of various types of

controllability for STNUs and proved that determining
strong controllability for an STNU is in P while
determining weak controllability is co-NP complete.

[7] delivered the surprisingly tractable algorithm for
determining dynamic controllability and executing a
dynamically controllable STNU. [11] is extending this
work to planning with shareable resources by handling
some aspects of task sequencing at execution time (on-
line).

[9] provides a description of conditional simple temporal
networks (CSTNs). Even though we provide a weak form
of conditional execution, our plans are not conditional in
that all tasks are possible in a single context, meaning that
we would have only one context label in a CSTN. Also,
our work focuses on the execution of such plans as
opposed to the verifiable construction of such plans.

Conclusions
We have described a tractable technique for reasoning
about certain disjunctive conditions while executing a plan
in metric time. We have presented a plan representation
and an algorithm that, when combined with other existing
algorithms, provides safe execution. We have provided as
examples some useful STNU topologies from real-world
examples. Our framework is deployed as part of the
Mission Data System [3].

Acknowledgement
This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet
Propulsion Laboratory, California Institute of Technology.

References
[1] Corman, T., Leiserson, C., and Rivest, R. Introduction
to Algorithms. MIT Press, 1996, pg. 430

[2] Dechter, R., Meiri I., and Pearl J., “Temporal
Constraint Networks,” Artificial Intelligence, 49, 1991, pp
61-95.

[3] Knight, R., Chien, S., Starbird, T., Gostelow, K., and
Keller, R. “Integrating Model-based Artificial Intelligence
Planning with Procedureal Elaboration for Onboard
Spacecraft Autonomy.” SpaceOps 2000, Toulouse, France,
June 2000.

[4] Laborie, P., Ghallab, M., “Planning with Sharable
Resource Constraints,” Proceedings IJCAI-95, 1643-1649

[5] Morris, P., and Muscettola, N., “Managing temporal
uncertainty through waypoint controllability.” In T. Dean,
editor, Proceedings of the 16th International Joint
Conference on A.I. (IJCAI-99), pages 1253–1258,
Stockholm (Sweden), 1999. Morgan Kaufmann.

[6] Morris, P., Muscettola, N., and Tsamardinos, I.,
“Reformulating temporal plans for efficient execution.”
Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning (KR-98),
Trento (Italy), 1998.

[7] Morris, P., Muscettola, N., and Vidal, T., “Dynamic
control of plans with temporal uncertainty.” International
Joint Conference on A.I. (IJCAI-01), Seattle (WA, USA),
2001.

[8] Muscettola, N., Nayak, P., Pell, B., and Williams, B.,
“Remote Agent: To Boldly Go Where No AI System Has
Gone Before,” Artificial Intelligence 103(1-2):5-48,
August 1998.

[9] Tsamardinos, I., Pollack, M., and Horty F., “Merging
plans with quantitative temporal constraints, temporally
exetended actions, and conditional branches,” Artificial
Intelligence Planning Systems, 2000.

[10] Vidal, T., “Controllability characterization and
checking in contingent temporal constraint networks.” In
Proceedings of the 7th International Conference on
Principles of Knowledge Representation and Reasoning
(KR2000), Breckenridge (Co, USA), 2000. Morgan Kauf-
mann, San Francisco, CA.

[11] Vidal, T. and Bidot, J., “Dynamic Sequencing of
Tasks in Simple Temporal Networks with Uncertainty.” In
the Proceedings of the Seventh International Conference
on Principles and Practice of Constraint Programming
(CP2001), Paphos, Cyprus, 2001. Springer-Verlag.

[12] Vidal, T. and Fargier, H., “Handling contingency in
temporal constraint networks: from consistency to
controllabilities.” Journal of Experimental & Theoretical
Artificial Intelligence, 11:23–45, 1999.

